Abstract
In the study of moduli of polarized abelian varieties and of curves as well as in the theory of complex multiplications, the notion of fields of moduli for structures plays an essential role. This notion was first introduced by Matsusaka [7] for polarized varieties with some pleasing properties and later was given a more comprehensible treatment by Shimura [10] in the case of polarized abelian varieties or polarized abelian varieties with some further structures. Both authors discussed fields of moduli not only in algebraic geometry of characteristic zero but also in that of positive characteristic, but in the latter case the definition of fields of moduli seems somewhat artificial and there have been no essential applications of them so far.

This publication has 8 references indexed in Scilit: