Endocytosis Via Caveolae
Top Cited Papers
- 1 May 2002
- Vol. 3 (5) , 311-320
- https://doi.org/10.1034/j.1600-0854.2002.30501.x
Abstract
Caveolae are flask-shaped invaginations present in the plasma membrane of many cell types. They have long been implicated in endocytosis, transcytosis, and cell signaling. Recent work has confirmed that caveolae are directly involved in the internalization of membrane components (glycosphingolipids and glycosylphosphatidylinositol-anchored proteins), extracellular ligands (folic acid, albumin, autocrine motility factor), bacterial toxins (cholera toxin, tetanus toxin), and several nonenveloped viruses (Simian virus 40, Polyoma virus). Unlike clathrin-mediated endocytosis, internalization through caveolae is a triggered event that involves complex signaling. The mechanism of internalization and the subsequent intracellular pathways that the internalized substances take are starting to emerge.Keywords
This publication has 108 references indexed in Scilit:
- Caveolae Are Highly Immobile Plasma Membrane Microdomains, Which Are not Involved in Constitutive Endocytic TraffickingMolecular Biology of the Cell, 2002
- Loss of Caveolae, Vascular Dysfunction, and Pulmonary Defects in Caveolin-1 Gene-Disrupted MiceScience, 2001
- Dynamin mediates caveolar sequestration of muscarinic cholinergic receptors and alteration in NO signalingThe EMBO Journal, 2000
- Dynamin-mediated Internalization of CaveolaeThe Journal of cell biology, 1998
- Dynamin at the Neck of Caveolae Mediates Their Budding to Form Transport Vesicles by GTP-driven Fission from the Plasma Membrane of EndotheliumThe Journal of cell biology, 1998
- The structure of simian virus 40 refined at 3.1 å resolutionStructure, 1996
- De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin.Proceedings of the National Academy of Sciences, 1995
- Caveolin, a protein component of caveolae membrane coatsPublished by Elsevier ,1992
- Potocytosis: Sequestration and Transport of Small Molecules by CaveolaeScience, 1992
- THE FINE STRUCTURE OF THE GALL BLADDER EPITHELIUM OF THE MOUSEThe Journal of cell biology, 1955