Frequency Cross-correlation of Intensity Fluctuations
- 1 November 1986
- journal article
- research article
- Published by Taylor & Francis in Optica Acta: International Journal of Optics
- Vol. 33 (11) , 1341-1358
- https://doi.org/10.1080/713821892
Abstract
Cross-frequency correlations of intensity fluctuations of a wave field scattered by a random medium contain useful information both about the source and the medium. In a previous paper expressions were obtained for such cross-correlations in the case of multiple scatter. The present paper examines the range of validity of these results and compares theoretical cross-spectra with those obtained by numerical simulations. We conclude that our previous results have a limited range of validity and that a new method of evaluating the exact multiple convolution solution is needed.Keywords
This publication has 9 references indexed in Scilit:
- Two-scale solution for the intensity fluctuations of two-frequency wave propagation in a random mediumJournal of the Optical Society of America A, 1985
- Analytical solution of the fourth-moment equation and interpretation as a set of phase screensJournal of the Optical Society of America A, 1985
- The MATE acoustic frequency cross correlations of intensityThe Journal of the Acoustical Society of America, 1985
- Frequency Cross-correlation of Intensity Fluctuations in Multiple ScatteringOptica Acta: International Journal of Optics, 1985
- Intensity fluctuations. Part I: TheoryThe Journal of the Acoustical Society of America, 1983
- An improved solution to the fourth moment equation for intensity fluctuationsProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1983
- Intensity fluctuations in a multiple scattering medium. Solution of the fourth moment equationProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1982
- Scintillations in astrophysics. I - an analytic solution of the second-order moment equationThe Astrophysical Journal, 1979
- Wave propagation in a random medium: A complete set of the moment equations with different wavenumbersJournal of Mathematical Physics, 1974