Abstract
Suppose that the properly normalized partial sums of a sequence of independent identically distributed random variables with values in a separable Banach space converge in distribution to a stable law of index $\alpha$. Then without changing its distribution, one can redefine the sequence on a new probability space such that these partial sums converge in probability and consequently even in $L^p (p < \alpha)$ to the corresponding stable process. This provides a new method to prove functional central limit theorems and related results. A similar theorem holds for stationary $\phi$-mixing sequences of random variables.

This publication has 0 references indexed in Scilit: