Elevation Dependency of the Surface Climate Change Signal: A Model Study
- 1 February 1997
- journal article
- Published by American Meteorological Society in Journal of Climate
- Vol. 10 (2) , 288-296
- https://doi.org/10.1175/1520-0442(1997)010<0288:edotsc>2.0.co;2
Abstract
Results are presented from a present-day and a doubled CO2 experiment over the Alpine region with a nested regional climate model. The simulated temperature change signal shows a substantial elevation dependency, mostly during the winter and spring seasons, resulting in more pronounced warming at high elevations than low elevations. This is caused by a depletion of snowpack in doubled CO2 conditions and further enhanced by the snow–albedo feedback. This result is consistent with some observed temperature trends for anomalously warm years over the Alpine region and suggests that high elevation temperature changes could be used as an early detection tool for global warming. Changes in precipitation, as well as other components of the surface energy and water budgets, also show an elevation signal, which may have important implications for impact assessments in high elevation regions. Abstract Results are presented from a present-day and a doubled CO2 experiment over the Alpine region with a nested regional climate model. The simulated temperature change signal shows a substantial elevation dependency, mostly during the winter and spring seasons, resulting in more pronounced warming at high elevations than low elevations. This is caused by a depletion of snowpack in doubled CO2 conditions and further enhanced by the snow–albedo feedback. This result is consistent with some observed temperature trends for anomalously warm years over the Alpine region and suggests that high elevation temperature changes could be used as an early detection tool for global warming. Changes in precipitation, as well as other components of the surface energy and water budgets, also show an elevation signal, which may have important implications for impact assessments in high elevation regions.Keywords
This publication has 0 references indexed in Scilit: