Pairing in the two-dimensional Hubbard model: An exact diagonalization study

Abstract
We have studied the pair susceptibilities for all possible pair wave functions that fit on a two-dimensional (2D) eight-site Hubbard cluster by exact diagonalization of the Hamiltonian. Band fillings corresponding to four and six electrons were studied (two or four holes in the half-filled band) for a wide range of Hubbard interaction strengths and temperatures. Our results show that all pairing susceptibilities are suppressed by the Hubbard repulsion. We have also carried out perturbation-theory calculations which show that the leading-order U2 contributions to the d-wave pair susceptibility suppresses d-wave pairing over a significant temperature range. These results are consistent with recent Monte Carlo results and provide further evidence suggesting that the 2D Hubbard model does not exhibit superconductivity.