Abstract
The pair <!-- MATH $\langle \Theta ,P\rangle$ --> of a point set <!-- MATH $\Theta \subset {\mathbb{R}^d}$ --> and a polynomial space P on <!-- MATH ${\mathbb{R}^d}$ --> is correct if the restriction map <!-- MATH $P \to {\mathbb{R}^\Theta }:p \mapsto {p_{|\Theta }}$ --> is invertible, i.e., if there is, for any f defined on , a unique which matches f on .

This publication has 3 references indexed in Scilit: