Dynamics of mitral regurgitant flow and orifice area. Physiologic application of the proximal flow convergence method: clinical data and experimental testing.

Abstract
BACKGROUNDThe proximal flow convergence method, a quantitative color Doppler flow technique, has been validated recently for calculating regurgitant flow and orifice area. We investigated the potential of the method as a tool to study different pathophysiological mechanisms of mitral valve incompetence by assessing the time course of regurgitant flow and orifice area and analyzed the implications for quantification of mitral regurgitation.METHODS AND RESULTSFifty-six consecutive patients with mitral regurgitation of different etiologies were studied. The instantaneous regurgitant flow rate Q(t) was computed from color M-mode recordings of the proximal flow convergence region and divided by the corresponding orifice velocity V(t) to obtain the instantaneous orifice area A(t). Regurgitant stroke volume (RSV) was obtained by integrating Q(t). Mean regurgitant flow rate Qm was calculated by RSV divided by regurgitation time. Peak-to-mean regurgitant flow rates Qp/Qm and orifice areas Ap/Am were calculated to ...