Abstract
A mathematical model has been developed to help explain human multi-sensory interactions. The most important constituent of the model is the hypothesis that the nervous system incorporates knowledge of sensory dynamics into an “internal model” of these dynamics. This internal model allows the nervous system to integrate the sensory information from many different sensors into a coherent estimate of self-motion. The essence of the model is unchanged from a previously published model of monkey eye movement responses; only a few variables have been adjusted to yield the prediction of human responses. During eccentric rotation, the model predicts that the axis of eye rotation shifts slightly toward alignment with gravito-inertial force. The model also predicts that the time course of the perception of tilt following the acceleration phase of eccentric rotation is much slower than that during deceleration. During off vertical axis rotation (OVAR) the model predicts a small horizontal bias along with small horizontal. vertical, and torsional oscillations. Following OVAR stimulation, when stopped right- or left-side down, a small vertical component is predicted that decays witht the horizontal post-rotatory response. All of the predictions are consistent with measurements of human responses.