Turbulence spectra from a tidal channel

Abstract
This paper describes the use of a hot film flowmeter in the sea and presents experimental measurements of the ‘downstream’ component of turbulent velocity in a tidal channel. The Reynolds number of the flow is about 108 and the scale of the turbulence is so large that a ship is carried about to a considerable extent by the energy-containing eddies. Under these conditions, a velocity measuring probe attached to a ship cannot be used for reliable measurements in the energy-containing range of the spectrum. It is possible, however, to observe the intertial and dissipation ranges. Records have been made at various stages of the tide. The one-dimensional spectra are found to be proportional to for several decades in k as predicted by Kolmogoroff, and a value is given for Kolmogoroff's constant. In the dissipation range there is close agreement with both Kovasznay's theory and Heisenberg's theory. These two theories are not very different in the low wave-number end of the range and the observations do not extend to high enough wave-numbers to distinguish between them.

This publication has 6 references indexed in Scilit: