Chaos in effective classical and quantum dynamics

Abstract
We investigate the dynamics of classical and quantum N-component φ4 oscillators in the presence of an external field. In the large N limit the effective dynamics is described by two-degree-of-freedom classical Hamiltonian systems. In the classical model we observe chaotic orbits for any value of the external field, while in the quantum case chaos is strongly suppressed. A simple explanation of this behavior is found in the change in the structure of the orbits induced by quantum corrections. Consistently with Heisenberg’s principle, quantum fluctuations are forced away from zero, removing in the effective quantum dynamics a hyperbolic fixed point that is a major source of chaos in the classical model.

This publication has 17 references indexed in Scilit: