Abstract
A simple analytic model describing the evolution of the thermal injury during and after exposure of biological tissue to pulses of intense laser radiation is presented. Estimates for the upper and lower bounds of the extent of the thermal injury associated with protein and enzyme denaturization (secondary damage) relative to the extent of burned tissue (primary damage) are presented. The energy necessary for burn threshold and the energy required to induce both types of thermal injury increase with laser pulse duration. An optimal duration of laser pulse exists at which the extent of the secondary damage relative to the primary damage is the smallest.