A Double-Moment Multiple-Phase Four-Class Bulk Ice Scheme. Part II: Simulations of Convective Storms in Different Large-Scale Environments and Comparisons with other Bulk Parameterizations
Open Access
- 1 April 1995
- journal article
- Published by American Meteorological Society in Journal of the Atmospheric Sciences
- Vol. 52 (8) , 1001-1033
- https://doi.org/10.1175/1520-0469(1995)052<1001:admmpf>2.0.co;2
Abstract
Part I of this study described a detailed four-class bulk ice scheme (4ICE) developed to simulate the hydro-meteor profiles of convective and stratiform precipitation associated with mesoscale convective systems. In Part II, the 4ICE scheme is incorporated into the Goddard Cumulus Ensemble (GCE) model and applied without any “tuning” to two squall lines occurring in widely different environments, namely, one over the “Pica) ocean in the Global Atmospheric Research Program's (GARP) Atlantic Tropical Experiment (GATE) and the other over a midlatitude continent in the Cooperative Huntsville Meteorological Experiment (COHMEX). Comparisons were made both with earlier three-class ice formulations and with observations. In both cases, the 4ICE scheme interacted with the dynamics so as to resemble the observations much more closely than did the model runs with either of the three-class ice parameterizations. The following features were well simulated in the COHMEX case: a lack of stratiform rain at the s... Abstract Part I of this study described a detailed four-class bulk ice scheme (4ICE) developed to simulate the hydro-meteor profiles of convective and stratiform precipitation associated with mesoscale convective systems. In Part II, the 4ICE scheme is incorporated into the Goddard Cumulus Ensemble (GCE) model and applied without any “tuning” to two squall lines occurring in widely different environments, namely, one over the “Pica) ocean in the Global Atmospheric Research Program's (GARP) Atlantic Tropical Experiment (GATE) and the other over a midlatitude continent in the Cooperative Huntsville Meteorological Experiment (COHMEX). Comparisons were made both with earlier three-class ice formulations and with observations. In both cases, the 4ICE scheme interacted with the dynamics so as to resemble the observations much more closely than did the model runs with either of the three-class ice parameterizations. The following features were well simulated in the COHMEX case: a lack of stratiform rain at the s...Keywords
This publication has 0 references indexed in Scilit: