Pollen scavenging and rain involvement in the pollination mechanism of interior spruce

Abstract
Pollination drops are secreted from the ovules of interior spruce (Picea glauca or Picea engelmannii and their hybrid) as seed cones begin to close at the end of the pollination period. Secreted pollination drops persist within spaces surrounding the micropylar opening in closed seed cones. Saccate pollen floats into the micropyle within the pollination drop. Pollination drops become voluminous enough, within the enclosed spaces, to scavenge pollen adhering to the micropylar arms and other surfaces in proximity with the micropyle. Scavenging of pollen from cone surfaces adjacent to the integuments is sometimes facilitated by rainwater that can float pollen into the opening of the micropyle before cone closure and pollination drop secretion. In practice, periodic, light misting of seed orchard trees during seed cone receptivity might increase pollination efficiency by mimicking rainwater involvement in the pollination mechanism. Rainwater involvement in pollination of some modern conifers may reflect a similar situation in the pollination mechanisms of ancestral conifers. Environments with limited rainfall combined with the requirement for moisture in the pollination mechanism may have provided the selective pressure for evolution of the pollination drop. Keywords: pollination drop, Picea, conifer, sacci.