Abstract
The parametric and nonparametric methods for estimating the error rates in linear discriminant analysis are examined both in normal and in nonnormal situations. A Monte Carlo experiment was carried out under the assumption that two population distributions were characterized by a mixture of two multivariate normal distributions. The bootstrap bias-corrected apparent error rate compares favourably to other available estimators for nonnormal populations with small Mahalanobis distance. The methods for error estimation are also applied to a practical problem in medical diagnosis