Audio scene segmentation using multiple features, models and time scales

Abstract
We present an algorithm for audio scene segmentation. An audio scene is a semantically consistent sound segment that is characterized by a few dominant sources of sound. A scene change occurs when a majority of the sources present in the data change. Our segmentation framework has three parts: a definition of an audio scene; multiple feature models that characterize the dominant sources; and a simple, causal listener model, which mimics human audition using multiple time-scales. We define a correlation function that determines correlation with past data to determine segmentation boundaries. The algorithm was tested on a difficult data set, a 1 hour audio segment of a film, with impressive results. It achieves an audio scene change detection accuracy of 97%.

This publication has 8 references indexed in Scilit: