Abstract
Astrocytes play an important role in neuroprotective responses. Recent studies indicate that endothelin-1, a neuropeptide upregulated during brain injury, increases levels of the endocannabinoid anandamide, a lipid with neuroprotective properties, in astrocytes in primary cultures. However, whether this neuropeptide also alters levels of 2-arachidonoyl glycerol (2-AG), the most abundant endocannabinoid in the CNS, in astrocytes remains unknown. In addition, 2-AG levels in astrocytes have never been measured. In this report we use chemical ionization gas chromatography/mass spectrometry to quantify picomole amounts of 2-AG in primary cultures of mouse astrocytes. We also demonstrate that endothelin-1 increases 2-AG production by 5-fold in these cells, a response that requires extracellular calcium and endothelin-1(A) receptor engagement. Immunocytochemistry showed that although cultured mouse neurons and microglia express cannabinoid receptors, cultured astrocytes do not. The data suggest that endothelin-1 modulates 2-AG production in astrocytes and that this endocannabinoid may participate in paracrine signaling toward neurons and microglia.