Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents

Abstract
In this paper we study the existence of nontrivial solutions for the boundary value problem \left\{ \begin{align*} −\:\Delta u\:−\:\lambda u\:−\:u\left|u\right|^{2^{⁎}\:−\:2}\: &= \:0\:\: && \mathrm{in}\:\:\Omega \\ u \: &= \: 0 && \mathrm{on}\:∂\Omega \\ \end{align*} \right. when Ω⊂R^n is a bounded domain, n⩾ 3 , 2^{⁎}\: = \:\frac{2n}{n−2} is the critical exponent for the Sobolev embedding \mathrm{H}_{0}^{1}(\Omega ) \subset \mathrm{L}^{p}(\Omega ) , λ is a real parameter. We prove that there is bifurcation from any eigenvalue λ_j of − Δ and we give an estimate of the left neighbourhoods ]\lambda _{j}^{⁎},\lambda _j] of λ_j , j\in N , in which the bifurcation branch can be extended. Moreover we prove that, if \lambda \in{]\lambda_j^{⁎},\lambda_j[} , the number of nontrivial solutions is at least twice the multiplicity of λ_j . The same kind of results holds also when Ω is a compact Riemannian manifold of dimension n ⩾ 3 , without boundary and Δ is the relative Laplace–Beltrami operator. Résumé: Dans cet article, nous étudions l’existence de solutions non triviales pour le problème aux limites \left\{ \begin{align*} −\:\Delta u\:−\:\lambda u\:−\:u\left|u\right|^{2^{⁎}\:−\:2}\: &= \:0\:\: && \mathrm{in}\:\:\Omega \\ u \: &= \: 0 && \mathrm{on}\:∂\Omega \\ \end{align*} \right. où Ω⊂R^n est un domaine borné, n⩾ 3 , 2^{⁎}\: = \:\frac{2n}{n−2} est l’exposant critique pour le plongement de Sobolev \mathrm{H}_{0}^{1}(\Omega ) \subset \mathrm{L}^{p}(\Omega ) , λ est un paramètre réel. Nous démontrons que toute valeur propre λ_j de − Δ est une valeur de bifurcation, et nous donnons une estimation des voisinages ]\lambda _{j}^{⁎},\lambda _j] de λ_j où existent des solutions non triviales. Nous montrons en outre que le nombre de celles-ci est au moins le double de la multiplicité de λ_j . On ales mêmes résultats quand Ω est une variété riemannienne compacte de dimension n ≧ 3 , et Δ l’opérateur de Laplace–Beltrami.

This publication has 4 references indexed in Scilit: