A real-time learning algorithm for a multilayered neural network based on the extended Kalman filter

Abstract
A novel real-time learning algorithm for a multilayered neural network is derived from the extended Kalman filter (EKF). Since this EKF-based learning algorithm approximately gives the minimum variance estimate of the linkweights, the convergence performance is improved in comparison with the backwards error propagation algorithm using the steepest descent techniques. Furthermore, tuning parameters which crucially govern the convergence properties are not included, which makes its application easier. Simulation results for the XOR and parity problems are provided.<>

This publication has 6 references indexed in Scilit: