Ischemic Damage in Hippocampal CA1 is Dependent on Glutamate Release and Intact Innervation from CA3
- 1 October 1989
- journal article
- research article
- Published by SAGE Publications in Journal of Cerebral Blood Flow & Metabolism
- Vol. 9 (5) , 629-639
- https://doi.org/10.1038/jcbfm.1989.90
Abstract
The removal of glutamatergic afferents to CA1 by destruction of the CA3 region is known to protect CA1 pyramidal cells against 10 min of transient global ischemia. To investigate further the pathogenetic significance of glutamate, we measured the release of glutamate in intact and CA3-lesioned CA1 hippocampal tissue. In intact CA1 hippocampal tissue, glutamate increased sixfold during ischemia; in the CA3-lesioned CA1 region, however, glutamate only increased 1.4-fold during ischemia. To assess the neurotoxic potential of the ischemia-induced release of glutamate, we injected the same concentration of glutamate into the CA1 region as is released during ischemia in normal, CA3-lesioned, and ischemic CA1 tissue. We found that this particular concentration of glutamate was sufficient to destroy CA1 pyramids in the vicinity of the injection site in intact and CA3-lesioned CA1 tissue when administered during control (non-ischemic) conditions. In contrast, the same amount injected during ischemia in the CA3-lesioned CA1 region destroyed pyramidal cells in a widely distributed zone around the injection site in the CA1 region. It is concluded that the ischemia-induced damage of pyramidal cells in CA1 is dependent on glutamate release and intact innervation from CA3.Keywords
This publication has 30 references indexed in Scilit:
- Brain MicrodialysisJournal of Neurochemistry, 1989
- Determination of Brain Interstitial Concentrations by MicrodialysisJournal of Neurochemistry, 1989
- Calcium accumulation by glutamate receptor activation is involved in hippocampal cell damage after ischemiaActa Neurologica Scandinavica, 1988
- Effect of Ischemia on the In Vivo Release of Striatal Dopamine, Glutamate, and γ‐Aminobutyric Acid Studied by Intracerebral MicrodialysisJournal of Neurochemistry, 1988
- Small Differences in Intraischemic Brain Temperature Critically Determine the Extent of Ischemic Neuronal InjuryJournal of Cerebral Blood Flow & Metabolism, 1987
- Ionic dependence of glutamate neurotoxicityJournal of Neuroscience, 1987
- Ischemia-Induced Shift of Inhibitory and Excitatory Amino Acids from Intra- to Extracellular CompartmentsJournal of Cerebral Blood Flow & Metabolism, 1985
- Cellular Origin of Ischemia‐Induced Glutamate Release from Brain Tissue In Vivo and In VitroJournal of Neurochemistry, 1985
- Effect of anoxia on ion distribution in the brainPhysiological Reviews, 1985
- Elevation of the Extracellular Concentrations of Glutamate and Aspartate in Rat Hippocampus During Transient Cerebral Ischemia Monitored by Intracerebral MicrodialysisJournal of Neurochemistry, 1984