Gaussian density functional calculations on the allyl and polyene radicals: C3H5 to C11H13

Abstract
The electronic structure of the allyl radical C3H5 and the polyene radicals C5H7, C7H9, C9H11, and C11H13 have been calculated using the linear combination of Gaussian-type orbitals-local spin density method. In contrast to the results obtained using the Hartree–Fock model, which show large errors, the geometries are in excellent agreement with multiconfiguration self-consistent-field calculations and with experiment. LSD yields a C2v symmetry for the allyl radical, while the polyenes C5H7 to C11H13 have C–C bonds alternating between single and double bonds. The harmonic vibrational frequencies were calculated for the allyl radical and C5H7 (the 1,4-pentadienyl radical). The unscaled vibrational frequencies calculated for the allyl radical are in excellent agreement with experiment.