Measured and computed volatilisation of the fungicide fenpropimorph from a sugar beet crop
- 7 October 2004
- journal article
- research article
- Published by Wiley in Pest Management Science
- Vol. 61 (2) , 151-158
- https://doi.org/10.1002/ps.964
Abstract
Depending on their vapour pressure, volatilisation can be one of the main pathways of emission of pesticides into the environment. The volatilisation of fenpropimorph was studied in a field experiment in which the fungicide was sprayed onto a sugar beet crop. Volatilisation rates were calculated by measuring the concentration gradient in air, using the Aerodynamic and Bowen Ratio methods. A simplified computation model was used to simulate pesticide volatilisation, together with the concurrent processes of penetration into the plant leaves and phototransformation. Input data for the model had already been obtained by carrying out a wind‐tunnel study with fenpropimorph, whereby field conditions were imitated. The computations yielded a reasonable description of the level and rate of decline of fenpropimorph volatilisation in the first 4 h after spraying. The continued volatilisation 2 and 3 days after spraying could be described by assuming that a fraction of the deposit was poorly exposed with comparatively low rates of the decline processes. In the first 3 days, penetration of fenpropimorph into the plant leaves was computed to be the main route for the pesticide (52% of the dosage), with substantial contributions from volatilisation (12%) and phototransformation (11%). The computation model can be developed further as a tool for extrapolating results on volatilisation from small‐scale experiments to field conditions, but this requires more information on the effect of environmental conditions on the model parameters. Copyright © 2004 Society of Chemical IndustryKeywords
This publication has 10 references indexed in Scilit:
- Computations on the Volatilisation of the Fungicide Fenpropimorph from Plants in a Wind TunnelWater, Air, & Soil Pollution, 2004
- Mass transfer of pesticides into the atmosphere by volatilization from soils and plants: overviewAgronomy for Sustainable Development, 2002
- Photolysis of pesticides: influence of epicuticular waxes fromPersica laevis DC on the photodegradation in the solid phase of aminocarb, methiocarb and fenthionPest Management Science, 2001
- Emission of Pesticides into the AirWater, Air, & Soil Pollution, 1999
- Atmospheric Dispersion of Current-Use Pesticides: A Review of the Evidence from Monitoring StudiesWater, Air, & Soil Pollution, 1999
- Methods for determining the vapour pressure of active ingredients used in crop protection. Part V: Thermogravimetry combined with solid phase microextraction (SPME)Pesticide Science, 1998
- A field comparison of several methods for measuring pesticide evaporation rates from soilEnvironmental Science & Technology, 1990
- A comparison of the aerodynamic and the theoretical-profile-shape methods for measuring pesticide evaporation from soilAtmospheric Environment (1967), 1989
- Pesticide persistence on foliageReviews of Environmental Contamination and Toxicology, 1987
- Compartmental model describing the foliar behavior of tridiphane on giant foxtailJournal of Agricultural and Food Chemistry, 1986