Induction of Mitochondrial Serine: Pyruvate Aminotransferase of Rat Liver by Glucagon and Insulin through Different Mechanisms

Abstract
Studies were performed in the rat liver to examine whether or not insulin as well as glucagon causes the induction of mitochondrial serine: pyruvate aminotransferase (SPTm) [EC 2.6.1.51] and if so, whether the mechanisms of induction are similar or different for the two hormones. Not only glucagon but also insulin induced SPTm. Cell-free translation assaying and RNA blot analysis showed that both hormones cause an increase in the hepatic level of mRNA for the precursor of SPTm. Their effects were virtually additive, and the time course of the increase in the mRNA level differed between the hormones. The maximal increase induced by glucagon was observed 3.5 h after the hormone injection while that by insulin was found after 6 h. The increase in the mRNA due to insulin was completely inhibited by the co-administration of cycloheximide, while that due to glucagon was not. The finding suggests that a newly synthesized, insulin-dependent protein(s) is involved in the regulation of the mRNA level by insulin. On the other hand, hydrocortisone treatment selectively suppressed the increase in the mRNA due to glucagon. These data indicate that the synthesis of the mRNA for SPTm is regulated by glucagon and insulin through different mechanisms. The size of the hormone-induced mRNA for SPTm gradually decreased with time, but the cell-free translation products did not exhibit size alteration. RNase H digestion to remove the poly(A) tail of the mRNA indicated that shortening of the poly(A) sequence might be responsible for the time-dependent size alteration of the mRNA.