Prominent expression and activity‐dependent nuclear translocation of Ca2+/calmodulin‐dependent protein kinase Iδ in hippocampal neurons

Abstract
Multifunctional Ca2+/calmodulin‐dependent protein kinases (CaMKs) including CaMKI, II and IV, are thought to regulate a variety of neuronal functions. Unlike CaMKII, which is regulated by autophosphorylation, CaMKI as well as CaMKIV are activated by CaMKK. In this study, we examined the cellular and subcellular localization of CaMKIδ, a recently identified fourth isoform of CaMKI, in the mature brain.In situhybridization analysis demonstrated wide expression of CaMKIδ mRNA in the adult mouse brain with prominent expression in the hippocampal pyramidal cells. FLAG‐tagged CaMKIδ was localized at the cytoplasm and neurites without nuclear immunoreactivity in approximately 80% of the transfected primary hippocampal neurons. The stimulation with either KCl depolarization or glutamate triggered the nuclear localization of FLAG‐tagged CaMKIδ by two‐fold with a peak at 1 min. In contrast, the catalytically inactive mutants of CaMKIδ remained cytoplasmic without nuclear translocation during KCl depolarization, indicating the requirement of its activation for the nuclear translocation. Furthermore, we showed that immunoprecipitated CaMKIδ could phosphorylate cAMP response element binding protein (CREB)αin vitroand that the over‐expression of CaMKIδ enhanced GAL4‐CREB‐luciferase activity in PC12 cells stimulated by KCl depolarization. Our present study provides the first evidence for the possible involvement of CaMKIδ in nuclear functions through its nuclear translocation in response to stimuli that trigger intracellular Ca2+influx.