Generation of a Membrane Potential by Lactococcus lactis through Aerobic Electron Transport

Abstract
Lactococcus lactis , a facultative anaerobic lactic acid bacterium, is known to have an increased growth yield when grown aerobically in the presence of heme. We have now established the presence of a functional, proton motive force-generating electron transfer chain (ETC) in L. lactis under these conditions. Proton motive force generation in whole cells was measured using a fluorescent probe (3′,3′-dipropylthiadicarbocyanine), which is sensitive to changes in membrane potential (Δψ). Wild-type cells, grown aerobically in the presence of heme, generated a Δψ even in the presence of the F 1 -F o ATPase inhibitor N , N ′-dicyclohexylcarbodiimide, while a cytochrome bd -negative mutant strain (CydAΔ) did not. We also observed high oxygen consumption rates by membrane vesicles prepared from heme-grown cells, compared to CydAΔ cells, upon the addition of NADH. This demonstrates that NADH is an electron donor for the L. lactis ETC and demonstrates the presence of a membrane-bound NADH-dehydrogenase. Furthermore, we show that the functional respiratory chain is present throughout the exponential and late phases of growth.