Abstract
Isolated and perfused rat hearts can be maintained for up to 2.5 h with minimal synthesis of a stress protein with a relative mass (Mr) of 71 kilodaltons (SP71). Isolated hearts, subjected to 17 h of cold (4 °C) ischemia, upon perfusion (37 °C) synthesize a large amount of SP71. In the present study, the effect of in vivo hyperthermia on protein synthesis in isolated and perfused hearts was examined. Hearts were excised from rats subjected to a 15-min episode of hyperthermia (42 °C), either immediately (no recovery) or after 24 h of recovery. The excised hearts were perfused either immediately or after 17 h of cold ischemia. Hyperthermia (no recovery) increased [3H]leucine incorporation into SP71, while hyperthermia with a 24-h recovery did not increase incorporation into SP71 during perfusion (no ischemia). Hyperthermia (no recovery) increased the incorporation of [3H]leucine into SP71 seen after cold ischemia. Hyperthermia with a 24-h recovery decreased the incorporation of [3H]leucine into SP71 seen after cold ischemia. This reduction in synthesis of SP71 after 24-h recovery from hyperthermia could be caused by the accumulation of SP71 suppressing its own synthesis or a measure of protection (tolerance) induced by the hyperthermia.