ATM is down-regulated by N-Myc–regulated microRNA-421
- 4 January 2010
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 107 (4) , 1506-1511
- https://doi.org/10.1073/pnas.0907763107
Abstract
Ataxia-telangiectasia mutated (ATM) is a high molecular weight protein serine/threonine kinase that plays a central role in the maintenance of genomic integrity by activating cell cycle checkpoints and promoting repair of DNA double-strand breaks. Little is known about the regulatory mechanisms for ATM expression itself. MicroRNAs are naturally existing regulators that modulate gene expression in a sequence-specific manner. Here, we show that a human microRNA, miR-421, suppresses ATM expression by targeting the 3′-untranslated region (3′UTR) of ATM transcripts. Ectopic expression of miR-421 resulted in S-phase cell cycle checkpoint changes and an increased sensitivity to ionizing radiation, creating a cellular phenotype similar to that of cells derived from ataxia-telangiectasia (A-T) patients. Blocking the interaction between miR-421 and ATM 3′UTR with an antisense morpholino oligonucleotide rescued the defective phenotype caused by miR-421 overexpression, indicating that ATM mediates the effect of miR-421 on cell cycle checkpoint and radiosensitivity. Overexpression of the N-Myc transcription factor, an oncogene frequently amplified in neuroblastoma, induced miR-421 expression, which, in turn, down-regulated ATM expression, establishing a linear signaling pathway that may contribute to N-Myc-induced tumorigenesis in neuroblastoma. Taken together, our findings implicate a previously undescribed regulatory mechanism for ATM expression and ATM-dependent DNA damage response and provide several potential targets for treating neuroblastoma and perhaps A-T.Keywords
This publication has 41 references indexed in Scilit:
- Identification of the Human Mature B Cell miRNomeImmunity, 2009
- MicroRNAs: Target Recognition and Regulatory FunctionsCell, 2009
- MicroRNA target site polymorphisms and human diseaseTrends in Genetics, 2008
- Functional and computational assessment of missense variants in the ataxia-telangiectasia mutated (ATM) gene: mutations with increased cancer riskHuman Mutation, 2008
- Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replicationNature, 2006
- Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpointsNature, 2006
- Activation of the DNA damage checkpoint and genomic instability in human precancerous lesionsNature, 2005
- DNA damage response as a candidate anti-cancer barrier in early human tumorigenesisNature, 2005
- Combinatorial microRNA target predictionsNature Genetics, 2005
- DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociationNature, 2003