Periodic multiphase solutions of the Kadomtsev-Petviashvili equation
- 7 May 1989
- journal article
- Published by IOP Publishing in Journal of Physics A: General Physics
- Vol. 22 (9) , 1259-1274
- https://doi.org/10.1088/0305-4470/22/9/016
Abstract
N-phase solutions of the Kadomtsev-Petviashvili (KP) equation (1970), that are periodic in space variables x and y, were obtained and effectively investigated using the Schottky uniformisation, of which a short description is given. Many wave patterns are represented graphically as contour plots and as isometric projections for different parameter values of two-, three- and four-phase solutions of the KP equation.Keywords
This publication has 15 references indexed in Scilit:
- Characterization of Jacobian varieties in terms of soliton equationsInventiones Mathematicae, 1986
- The laplacian for domains in hyperbolic space and limit sets of Kleinian groupsActa Mathematica, 1985
- Theta functions and non-linear equationsRussian Mathematical Surveys, 1981
- METHODS OF ALGEBRAIC GEOMETRY IN THE THEORY OF NON-LINEAR EQUATIONSRussian Mathematical Surveys, 1977
- NON-LINEAR EQUATIONS OF KORTEWEG-DE VRIES TYPE, FINITE-ZONE LINEAR OPERATORS, AND ABELIAN VARIETIESRussian Mathematical Surveys, 1976
- The spectrum of Hill's equationInventiones Mathematicae, 1975
- Automorphic forms for Schottky groupsAdvances in Mathematics, 1975
- On Schottky Groups with Applications to Kleinian GroupsAnnals of Mathematics, 1968
- A characterization of Schottky groupsJournal d'Analyse Mathématique, 1967
- Ueber eine specielle Function, welche bei einer bestimmten linearen Transformation ihres Arguments unverändert bleibt.Journal für die reine und angewandte Mathematik (Crelles Journal), 1887