Phase transitions of a few-electron system in a spherical quantum dot
- 29 August 2002
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 66 (7) , 075335
- https://doi.org/10.1103/physrevb.66.075335
Abstract
The spin configurations of a spherical quantum dot, defined by a three-dimensional (3D) harmonic confinement potential, containing a few Coulomb Fermi particles (electrons or holes) are studied. Quantum transitions involving a spin transformation and a “cold melting” (from a Wigner crystal-like state, i.e., from regime of strongly correlated electrons, to a Fermi-liquid-like phase) is driven by the dimensionless quantum control parameter q (which is connected with steepness of the confinement potential) is demonstrated. The pair correlation and radial distribution functions which characterize electronic quantum delocalization are analyzed. The calculations using the unrestricted variational Hartree-Fock method (for the ground state at and the more computer intensive quantum path integral Monte Carlo method (for are performed and compared. For small q, the ground state of the three electron system is crystal-like and has symmetry, i.e., the maxima of electron density are located at the nodes of an equilateral triangle. The preferable spin configuration for small q is “ferromagnetic,” with total spin As q rises, the widths of the one-electron wave functions grow and become overlapping. At a critical value the ground state changes from to and at the same time, asymmetry appears in the triangle (i.e., spontaneous breaking of the symmetry to symmetry). At a second critical value the electron distribution undergoes a symmetry phase transition, from trianglelike (with symmetry) to axial symmetric (with symmetry). As q grows further, we obtain a Fermi-liquid-like (non-interacting) electron configuration in the ground state In addition, the state, at a critical q value (which is slightly larger than undergoes a dramatic charge redistribution.
Keywords
This publication has 22 references indexed in Scilit:
- Wigner Crystallization in Mesoscopic 2D Electron SystemsPhysical Review Letters, 2001
- Wigner molecules in quantum dotsPhysical Review B, 2001
- Collective and Independent-Particle Motion in Two-Electron Artificial AtomsPhysical Review Letters, 2000
- Quantum states of interacting electrons in a real quantum dotPhysical Review B, 2000
- Spontaneous Symmetry Breaking in Single and Molecular Quantum DotsPhysical Review Letters, 1999
- Crossover from Fermi Liquid to Wigner Molecule Behavior in Quantum DotsPhysical Review Letters, 1999
- “Spherical” quantum dotsPhysics of the Solid State, 1998
- Energy spectra and quantum crystallization in two-electron quantum dots in a magnetic fieldPhysics of the Solid State, 1998
- Structure and melting of dipole clustersPhysics Letters A, 1997
- Coulomb clusters in a trapPhysics Letters A, 1990