Effects of doping on spin correlations in the periodic Anderson model
Preprint
- 30 June 1998
Abstract
We studied the effects of hole doping on spin correlations in the periodic Anderson model, mainly at the full and three-quarters-full lower bands cases. In the full lower band case, strong anti-ferromagnetic correlations develop when the on-site repulsive interaction strength $U$ becomes comparable to the quasi-particle band width. In the three-quarters full case, a novel kind of spin correlation develops that is consistent with the resonance between a $(\pi,0)$ and a $(0,\pi)$ spin-density wave. In this state the spins on different sublattices appear uncorrelated. Hole doping away from the completely full case rapidly destroys the long-range anti-ferromagnetic correlations, in a manner reminiscent of the destruction of anti-ferromagnetism in the Hubbard model. In contrast to the Hubbard model, the doping does not shift the peak in the magnetic structure factor from the $(\pi,\pi)$ position. At dopings intermediate to the full and three-quarters full cases, only weak spin correlations exist.
Keywords
All Related Versions
- Version 1, 1998-06-30, ArXiv
- Published version: Physical Review B, 58 (11), 6992.
This publication has 0 references indexed in Scilit: