Infection of Ciliated Cells by Human Parainfluenza Virus Type 3 in an In Vitro Model of Human Airway Epithelium
Open Access
- 15 January 2005
- journal article
- Published by American Society for Microbiology in Journal of Virology
- Vol. 79 (2) , 1113-1124
- https://doi.org/10.1128/jvi.79.2.1113-1124.2005
Abstract
We constructed a human recombinant parainfluenza virus type 3 (rPIV3) that expresses enhanced green fluorescent protein (GFP) and used this virus, rgPIV3, to characterize PIV3 infection of an established in vitro model of human pseudostratified mucociliary airway epithelium (HAE). The apical surface of HAE was highly susceptible to rgPIV3 infection, whereas only occasional cells were infected when virus was applied to the basolateral surface. Infection involved exclusively ciliated epithelial cells. There was little evidence of virus-mediated cytopathology and no spread of the virus beyond the ciliated cell types. Infection of ciliated cells by rgPIV3 was sensitive to a neuraminidase specific for α2-6-linked sialic acid residues, but not to a neuraminidase that cleaves α2-3- and α2-8-linked sialic acid residues. This provided evidence that rgPIV3 utilizes α2-6-linked sialic acid residues for initiating infection, a specificity also described for human influenza viruses. The PIV3 fusion (F) glycoprotein was trafficked exclusively to the apical surface of ciliated cells, which also was the site of release of progeny virus. F glycoprotein localized predominately to the membranes of the cilial shafts, suggesting that progeny viruses may bud from cilia per se. The polarized trafficking of F glycoprotein to the apical surface also likely restricts its interaction with neighboring cells and could account for the observed lack of cell-cell fusion. HAE derived from cystic fibrosis patients was not more susceptible to rgPIV3 infection but did exhibit limited spread of virus due to impaired movement of lumenal secretions due to compromised function of the cilia.Keywords
This publication has 58 references indexed in Scilit:
- Role of the Hemagglutinin-Neuraminidase Protein in the Mechanism of Paramyxovirus-Cell Membrane FusionJournal of Virology, 2002
- Polarity of Human Parainfluenza Virus Type 3 Infection in Polarized Human Lung Epithelial A549 Cells: Role of Microfilament and MicrotubuleJournal of Virology, 2001
- Paramecium GPI Proteins: Variability of Expression and LocalizationProtist, 2000
- Heparin-dependent attachment ofrespiratory syncytial virus (RSV) to host cellsArchiv für die gesamte Virusforschung, 1997
- Efficient Adenovirus-Mediated Gene Transfer to Basal but Not Columnar Cells of Cartilaginous Airway EpitheliaHuman Gene Therapy, 1996
- Evidence for Recycling of the Resident medial/trans Golgi Enzyme, N-Acetylglucosaminyltransferase I, in ldlD CellsJournal of Biological Chemistry, 1995
- Paramyxovirus mediated cell fusion requires co-expression of both the fusion and hemagglutinin-neuraminidase glycoproteinsVirus Research, 1994
- Receptor ganglioside content of three hosts for sendai virus: MDBK, HeLa, and MDCK CellsBiochimica et Biophysica Acta (BBA) - Biomembranes, 1984
- Attachment of Two Myxoviruses to Ciliated Epithelial CellsJournal of General Virology, 1970
- Pathological changes in virus infections of the lower respiratory tract in childrenJournal of Clinical Pathology, 1970