Abstract
Short distance structure of spacetime may show up in the form of high frequency dispersion. Although such dispersion is not locally Lorentz invariant, we show in a scalar field model how it can nevertheless be incorporated into a generally covariant metric theory of gravity provided the locally preferred frame is dynamical. We evaluate the resulting energy-momentum tensor and compute its expectation value for a quantum field in a thermal state. The equation of state differs at high temperatures from the usual one, but not by enough to impact the problems of a hot big bang cosmology. We show that a superluminal dispersion relation can solve the horizon problem via superluminal equilibration; however it cannot do so while remaining outside the Planck regime unless the dispersion relation is artificially chosen to have a rather steep dependence on the wave vector.

This publication has 7 references indexed in Scilit: