Map-reduce-merge
Top Cited Papers
- 11 June 2007
- proceedings article
- Published by Association for Computing Machinery (ACM)
- p. 1029-1040
- https://doi.org/10.1145/1247480.1247602
Abstract
Map-Reduce is a programming model that enables easy development of scalable parallel applications to process a vast amount of data on large clusters of commodity machines. Through a simple interface with two functions, map and reduce, this model facilitates parallel implementation of many real-world tasks such as data processing jobs for search engines and machine learning. However,this model does not directly support processing multiple related heterogeneous datasets. While processing relational data is a common need, this limitation causes difficulties and/or inefficiency when Map-Reduce is applied on relational operations like joins. We improve Map-Reduce into a new model called Map-Reduce-Merge. It adds to Map-Reduce a Merge phase that can efficiently merge data already partitioned and sorted (or hashed) by map and reduce modules. We also demonstrate that this new model can express relational algebra operators as well as implement several join algorithms.Keywords
This publication has 5 references indexed in Scilit:
- DryadPublished by Association for Computing Machinery (ACM) ,2007
- Scientific data management in the coming decadeACM SIGMOD Record, 2005
- The Google file systemPublished by Association for Computing Machinery (ACM) ,2003
- Optimizing data aggregation for cluster-based internet servicesPublished by Association for Computing Machinery (ACM) ,2003
- Parallel database systemsCommunications of the ACM, 1992