Understanding the Sensitivity of a GCM Simulation of Amazonian Deforestation to the Specification of Vegetation and Soil Characteristics
Open Access
- 1 June 1997
- journal article
- Published by American Meteorological Society in Journal of Climate
- Vol. 10 (6) , 1216-1235
- https://doi.org/10.1175/1520-0442(1997)010<1216:utsoag>2.0.co;2
Abstract
The experiment reported on here presents a realistic portrayal of Amazonian deforestation that uses measurements of vegetation characteristics, taken as part of the Anglo–Brazilian Amazonian Climate Observation Study field campaigns, to define the forest and replacement pasture vegetation in the Hadley Centre GCM. The duration of the main experiment (10 yr) leads to greater confidence in assessing regional changes than in previous shorter experiments. Complete removal of the Amazonian forest produced area-mean changes that resemble earlier experiments with decreases in evaporation of 0.76 mm day−1 (18%) and rainfall of 0.27 mm day−1 (4%) and a rise in surface temperature of 2.3°C. However, the relative changes in magnitude indicate that increased moisture convergence partly compensates for the reduced evaporation, in contrast to many previous deforestation experiments. Results also showed large regional variations in the change in annual mean rainfall over South America, with widespread decreases... Abstract The experiment reported on here presents a realistic portrayal of Amazonian deforestation that uses measurements of vegetation characteristics, taken as part of the Anglo–Brazilian Amazonian Climate Observation Study field campaigns, to define the forest and replacement pasture vegetation in the Hadley Centre GCM. The duration of the main experiment (10 yr) leads to greater confidence in assessing regional changes than in previous shorter experiments. Complete removal of the Amazonian forest produced area-mean changes that resemble earlier experiments with decreases in evaporation of 0.76 mm day−1 (18%) and rainfall of 0.27 mm day−1 (4%) and a rise in surface temperature of 2.3°C. However, the relative changes in magnitude indicate that increased moisture convergence partly compensates for the reduced evaporation, in contrast to many previous deforestation experiments. Results also showed large regional variations in the change in annual mean rainfall over South America, with widespread decreases...Keywords
This publication has 0 references indexed in Scilit: