Remarks on the large time behaviour of a nonlinear diffusion equation
- 1 October 1987
- journal article
- Published by European Mathematical Society - EMS - Publishing House GmbH in Annales de l'Institut Henri Poincaré C, Analyse non linéaire
- Vol. 4 (5) , 423-452
- https://doi.org/10.1016/s0294-1449(16)30358-4
Abstract
Consider the diffusion equation u_t − Δu = |u|^{p − 1}u (where p > 1 + \frac{2}{\mathrm{N}} and (N − 2) p < N + 2 ) on the space ℝ^N . We prove that either \Vert u(t)\Vert_∞ blows-up in finite time or \Vert u(t)\Vert_∞ goes to zero like t^{−1/(p − 1)} as t → +∞ . We give also a new proof to the fact that when u(t) ≧ 0 and 1 < p≦1 + \frac{2}{\mathrm{N}} then \Vert u(t)\Vert_∞ blows-up in finite time. Sufficient conditions for global existence or blow-up are given, and the case where instead of ℝ^N one has a cone like domain is also studied. Résumé: Nous étudions le comportement en temps des solutions de u_t − Δu = |u|^{p − 1}u . Nous montrons que si p > 1 + \frac{2}{\mathrm{N}} et (N − 2) p < N + 2 , ou bien \Vert u(t)\Vert_∞ explose en temps fini, ou bien \Vert u(t)\Vert_∞ tend vers zéro comme t−1/(p − 1) lorsque t → ∞ . On donne également une nouvelle démonstration du fait que si 1 < p≦1 + \frac{2}{\mathrm{N}} et u(t) ≧ 0 , alors \Vert u(t)\Vert_∞ explose en temps fini. Des conditions suffisantes pour l’existence globale (ou l’explosion en temps fini) sont présentées, et le cas où ℝ^N est remplacé par un cône est également étudié.This publication has 6 references indexed in Scilit:
- Multidimensional nonlinear diffusion arising in population geneticsPublished by Elsevier ,2004
- Solutions globales d'equations de la chaleur semi lineaires.Communications in Partial Differential Equations, 1984
- Existence and non-existence of global solutions for a semilinear heat equationIsrael Journal of Mathematics, 1981
- On the growing up problem for semilinear heat equationsJournal of the Mathematical Society of Japan, 1977
- Saddle points and instability of nonlinear hyperbolic equationsIsrael Journal of Mathematics, 1975
- On global solution of nonlinear hyperbolic equationsArchive for Rational Mechanics and Analysis, 1968