Flexibility of $α$-helices: Results of a statistical analysis of database protein structures

Abstract
$\alpha$-helices stand out as common and relatively invariant secondary structural elements of proteins. However, $\alpha$-helices are not rigid bodies and their deformations can be significant in protein function ({\it e.g.} coiled coils). To quantify the flexibility of $\alpha$-helices we have performed a structural principal-component analysis of helices of different lengths from a representative set of protein folds in the Protein Data Bank. We find three dominant modes of flexibility: two degenerate bend modes and one twist mode. The data are consistent with independent Gaussian distributions for each mode. The mode eigenvalues, which measure flexibility, follow simple scaling forms as a function of helix length. The dominant bend and twist modes and their harmonics are reproduced by a simple spring model, which incorporates hydrogen-bonding and excluded volume. As an application, we examine the amount of bend and twist in helices making up several coiled-coil proteins. Incorporation of $\alpha$-helix flexibility into structure refinement and design is discussed.
All Related Versions

This publication has 0 references indexed in Scilit: