Convectively Coupled Equatorial Waves: Analysis of Clouds and Temperature in the Wavenumber–Frequency Domain
- 1 February 1999
- journal article
- Published by American Meteorological Society in Journal of the Atmospheric Sciences
- Vol. 56 (3) , 374-399
- https://doi.org/10.1175/1520-0469(1999)056<0374:ccewao>2.0.co;2
Abstract
A wavenumber-frequency spectrum analysis is performed for all longitudes in the domain 15°S–15°N using a long (∼18 years) twice-daily record of satellite-observed outgoing longwave radiation (OLR), a good proxy for deep tropical convection. The broad nature of the spectrum is red in both zonal wavenumber and frequency. By removing an estimated background spectrum, numerous statistically significant spectral peaks are isolated. Some of the peaks correspond quite well to the dispersion relations of the equatorially trapped wave modes of shallow water theory with implied equivalent depths in the range of 12–50 m. Cross-spectrum analysis with the satellite-based microwave sounding unit deep-layer temperature data shows that these spectral peaks in the OLR are “coupled” with this dynamical field. The equivalent depths of the convectively coupled waves are shallower than those typical of equatorial waves uncoupled with convection. Such a small equivalent depth is thought to be a result of the interacti... Abstract A wavenumber-frequency spectrum analysis is performed for all longitudes in the domain 15°S–15°N using a long (∼18 years) twice-daily record of satellite-observed outgoing longwave radiation (OLR), a good proxy for deep tropical convection. The broad nature of the spectrum is red in both zonal wavenumber and frequency. By removing an estimated background spectrum, numerous statistically significant spectral peaks are isolated. Some of the peaks correspond quite well to the dispersion relations of the equatorially trapped wave modes of shallow water theory with implied equivalent depths in the range of 12–50 m. Cross-spectrum analysis with the satellite-based microwave sounding unit deep-layer temperature data shows that these spectral peaks in the OLR are “coupled” with this dynamical field. The equivalent depths of the convectively coupled waves are shallower than those typical of equatorial waves uncoupled with convection. Such a small equivalent depth is thought to be a result of the interacti...Keywords
This publication has 0 references indexed in Scilit: