Intercalation Interactions between dsDNA and Acridine Studied by Single Molecule Force Spectroscopy

Abstract
In this letter, we report on the direct measurement of the intercalation interactions between acridine and double-stranded DNA (dsDNA) using single molecule force spectroscopy. The interaction between acridine and dsDNA is broken by force of 36 pN at a loading rate of 5.0 nN/s. The most probable rupture force between acridine and dsDNA is dependent on the loading rate, indicating that the binding of acridine and dsDNA is a dynamic process. The combination of SMFS experimental data with the theoretical model clearly suggests the presence of two energy barriers along with an unbinding trajectory of acridine−dsDNA.