Abstract
It is shown that entrainment leads to the generation of turbulence kinetic energy in a stratocumulus layer when the virtual temperature jump at the cloud top is weaker than a critical value. The critical value increases as the relative humidity of the air above cloud top decreases. This result is interpreted as a criterion for the instability of the layer cloud to penetrative downdrafts. The role of the instability in determining the subtropical and tropical distributions of boundary-layer cloudiness is assessed. Abstract It is shown that entrainment leads to the generation of turbulence kinetic energy in a stratocumulus layer when the virtual temperature jump at the cloud top is weaker than a critical value. The critical value increases as the relative humidity of the air above cloud top decreases. This result is interpreted as a criterion for the instability of the layer cloud to penetrative downdrafts. The role of the instability in determining the subtropical and tropical distributions of boundary-layer cloudiness is assessed.

This publication has 0 references indexed in Scilit: