Use of Varying Constraints in Optimal 3-D Graph Search for Segmentation of Macular Optical Coherence Tomography Images

Abstract
An optimal 3-D graph search approach designed for simultaneous multiple surface detection is extended to allow for varying smoothness and surface interaction constraints instead of the traditionally used constant constraints. We apply the method to the intraretinal layer segmentation of 24 3-D optical coherence tomography (OCT) images, learning the constraints from examples in a leave-one-subject-out fashion. Introducing the varying constraints decreased the mean unsigned border positioning errors (mean error of 7.3 ± 3.7 μm using varying constraints compared to 8.3 ± 4.9 μm using constant constraints and 8.2 ± 3.5 μm for the inter-observer variability).