Relativistic configuration-interaction theory for atomic systems

Abstract
The relativistic configuration-interaction method with analytical relativistic Hartree-Fock-Roothaan (RHFR) basis functions for atomic systems is presented. One-electron functions used for constructing configuration state functions (CSF’s) are obtained with the RHFR method in which the large and small components of the radial part of a four-component wave function are expanded in terms of an analytical basis set consisting of Slater-type orbitals. Numerical application of the method to neonlike atomic systems is carried out. It is shown that calculated excitation energies with the method are in good agreement with experiment. The Z-dependent behavior of the optical oscillator strengths for various electric-dipole transitions from the ground state in the systems is also given.