Effects of ischemia and myogenic activity on active and passive mechanical properties of rat cerebral arteries

Abstract
Passive (papaverine induced) and active (spontaneous pressure induced) biomechanical properties of ischemic and nonischemic rat middle cerebral arteries (MCAs) were studied under pressurized conditions in vitro. Ischemic (1 h of occlusion), contralateral, and sham-operated control MCAs were isolated from male Wistar rats ( n = 22) and pressurized using an arteriograph system that allowed control of transmural pressure (TMP) and measurement of lumen diameter and wall thickness. Three mechanical stiffness parameters were computed: overall passive stiffness (β), pressure-dependent modulus changes ( E inc,p), and smooth muscle cell (SMC) activity-dependent changes ( E inc,a). The β-value for ischemic vessels was increased compared with sham vessels (13.9 ± 1.7 vs. 9.1 ± 1.4, P < 0.05), indicating possible short-term remodeling due to ischemia. E inc,p increased with pressure in the passive vessels ( P < 0.05) but remained relatively constant in the active vessels for all vessel types, indicating that pressure-induced SMC contractile activity (i.e., myogenic reactivity) in cerebral arteries leads to the maintenance of a constant elastic modulus within the autoregulatory pressure range. E inc,a increased with pressure for all conditions, signifying that changes in stiffness are influenced by SMC activity and vascular tone.