Hilbert Transforms Associated With Plane Curves
Open Access
- 1 October 1976
- journal article
- Published by JSTOR in Transactions of the American Mathematical Society
- Vol. 223, 235-252
- https://doi.org/10.2307/1997526
Abstract
Let <!-- MATH $(t,\gamma (t))$ --> be a plane curve. Set <!-- MATH ${H_\gamma }f(x,y) = \text{p.v.}\;\smallint f(x - t,y - \gamma (t))dt/t$ --> p.v. for <!-- MATH $f \in C_0^\infty ({R^2})$ --> . For a large class of curves, the authors prove <!-- MATH ${\left\| {{H_\gamma }f} \right\|_p} \leqslant {A_p}{\left\| f \right\|_p},5/3 < p < 5/2$ --> <img width="297" height="41" align="MIDDLE" border="0" src="images/img5.gif" alt="$ {\left\Vert {{H_\gamma }f} \right\Vert _p} \leqslant {A_p}{\left\Vert f \right\Vert _p},5/3 < p < 5/2$">. Various examples are given to show that some condition on the curve <!-- MATH $(t,\gamma (t))$ --> is necessary.
Keywords
This publication has 2 references indexed in Scilit:
- Introduction to Fourier Analysis on Euclidean Spaces (PMS-32)Published by Walter de Gruyter GmbH ,1972
- Singular Integrals and Differentiability Properties of Functions (PMS-30)Published by Walter de Gruyter GmbH ,1971