Novel membrane-bound GM-CSF vaccines for the treatment of cancer: generation and evaluation of mbGM-CSF mouse B16F10 melanoma cell vaccine

Abstract
Cancer vaccines composed of tumor cells engineered to secrete granulocyte–macrophage colony-stimulating factor (GM-CSF) are currently being clinically evaluated. To enhance the immunogenicity of GM-CSF-secreting tumor cell vaccines, a novel approach expressing GM-CSF as a membrane-bound form (mbGM-CSF) on the tumor cell surface was investigated. The intent was to enhance antigen presentation by increasing interactions between the tumor cell lines in the vaccine and GM-CSF receptor positive antigen presenting cells (APC), notably the patient's Langerhans cells residing within the intradermal injection site. B16.F10 cells engineered to express either membrane-bound or secreted GM-CSF were compared in the B16.F10 mouse melanoma model. We observed that mbGM-CSF on the tumor cell surface retarded growth and induced protective immunity to subsequent wild-type tumor challenge more effectively than tumor cells secreting GM-CSF. Vaccination with irradiated mbGM-CSF B16.F10 also provided strong protection from wild-type tumor challenge, improved therapeutic effects against established tumors, and retarded lung metastases. These results demonstrate that mbGM-CSF B16.F10 cells can induce strong systemic immunity that protects against and therapeutically treats B16.F10 melanoma more effectively than analogous vaccines containing only secreted GM-CSF. These data warrant further development and clinical testing of mbGM-CSF tumor cell vaccines.