Application of A Distributed Nucleus Approximation In Grid Based Minimization of the Kohn-Sham Energy Functional

Abstract
In the distributed nucleus approximation we represent the singular nucleus as smeared over a smallportion of a Cartesian grid. Delocalizing the nucleus allows us to solve the Poisson equation for theoverall electrostatic potential using a linear scaling multigrid algorithm.This work is done in the context of minimizing the Kohn-Sham energy functionaldirectly in real space with a multiscale approach. The efficacy of the approximation is illustrated bylocating the ground state density of simple one electron atoms and moleculesand more complicated multiorbital systems.

This publication has 0 references indexed in Scilit: