Spectral Theory of the Difference Equation f(n + 1) + f(n − 1) = [E − φ(n)]f(n)
- 1 March 1969
- journal article
- Published by AIP Publishing in Journal of Mathematical Physics
- Vol. 10 (3) , 421-425
- https://doi.org/10.1063/1.1664855
Abstract
In this work, the spectrum of the second‐order difference equation in the l2 Hilbert space is studied for the case in which the limit of the sequence exists. By means of a simple representation the problem is transferred to one about the spectrum of an abstract operator in a separable Hilbert space. This operator T has a form analogous to the Schrödinger operator, namely T = T0 + A, where T0 is self‐adjoint with a purely continuous spectrum but bounded, while A depends on the sequence {φ(n)}. In fact, A is of Hilbert‐Schmidt type for any {φ(n)} in l2, and of trace class if the series converges. Sufficient conditions for the existence of a discrete spectrum and more generally, of proper values, are found. Using the theory of the wave operators range exp (−iT0t), results on the existence of a mixed spectrum are obtained.
Keywords
This publication has 6 references indexed in Scilit:
- Über das Eigenwertproblem der FunktionalgleichungZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 1968
- Approximation of the Eigenvalues of Non Self‐Adjoint OperatorsJournal of Mathematics and Physics, 1966
- The asymptotic condition for simple scattering systemsIl Nuovo Cimento (1869-1876), 1959
- Single Band Motion of Conduction Electrons in a Uniform Magnetic FieldProceedings of the Physical Society. Section A, 1955
- Störungsrechnung bei dreigliedrigen Rekursionen. IIMathematische Nachrichten, 1949
- Störungsrechnung bei dreigliedrigen Rekursionen. I. Helmut Hasse zum 50. GeburtstagMathematische Nachrichten, 1948