The Brera Multi-scale Wavelet (BMW) ROSAT HRI source catalog. II: application to the HRI and first results

Abstract
The wavelet detection algorithm (WDA) described in the accompanying paper by Lazzati et al. is made suited for a fast and efficient analysis of images taken with the High Resolution Imager (HRI) instrument on board the ROSAT satellite. An extensive testing is carried out on the detection pipeline: HRI fields with different exposure times are simulated and analysed in the same fashion as the real data. Positions are recovered with few arcsecond errors, whereas fluxes are within a factor of two from their input values in more than 90% of the cases in the deepest images. At variance with the ``sliding-box'' detection algorithms, the WDA provides also a reliable description of the source extension, allowing for a complete search of e.g. supernova remnant or cluster of galaxies in the HRI fields. A completeness analysis on simulated fields shows that for the deepest exposures considered (~120 ks) a limiting flux of \~3x10^{-15} erg/cm2/s can be reached over the entire field of view. We test the algorithm on real HRI fields selected for their crowding and/or presence of extended or bright sources (e.g. cluster of galaxies and of stars, supernova remnants). We show that our algorithm compares favorably with other X-ray detection algorithms such as XIMAGE and EXSAS. A complete catalog will result from our analysis: it will consist of the Brera Multi-scale Wavelet Bright Source Catalog (BMW-BSC) with sources detected with a significance >4.5 sigma and of the Faint Source Catalog (BMW-FSC) with sources at >3.5 sigma. A conservative estimate based on the extragalactic log(N)-log(S) indicates that at least 16000 sources will be revealed in the complete analysis of the whole HRI dataset.

This publication has 0 references indexed in Scilit: