Chronic hypoglycemia and diabetes impair counterregulation induced by localized 2-deoxy-glucose perfusion of the ventromedial hypothalamus in rats.

Abstract
Previous studies have demonstrated that the ventromedial hypothalamus (VMH) plays a critical role in sensing and responding to systemic hypoglycemia. To evaluate the mechanisms of defective counterregulation caused by iatrogenic hypoglycemia and diabetes per se, we delivered 2-deoxy-glucose (2-DG) via microdialysis into the VMH to produce localized cellular glucopenia in the absence of systemic hypoglycemia. Three groups of awake chronically catheterized rats were studied: 1) nondiabetic (with a mean daily glucose [MDG] of 6.9 mmol/l) BB control rats (n = 5); 2) chronically hypoglycemic nondiabetic (3-4 weeks, with an MDG of 2.7 mmol/l) BB rats (n = 5); and 3) moderately hyperglycemic insulin-treated diabetic (with an MDG of 12.4 mmol/l) BB rats (n = 8). In hypoglycemic rats, both glucagon and catecholamine responses to VMH glucopenia were markedly (77-93%) suppressed. In diabetic rats, VMH 2-DG perfusion was totally ineffective in stimulating glucagon release. The epinephrine response, but not the norepinephrine response, was also diminished by 38% in the diabetic group. We conclude that impaired counterregulation after chronic hypoglycemia may result from alterations of the VMH or its efferent pathways. In diabetes, the capacity of VMH glucopenia to activate the sympathoadrenal system is only modestly diminished; however, the communication between the VMH and the alpha-cell is totally interrupted.