Identification and Characterization of the scl Gene Encoding a Group A Streptococcus Extracellular Protein Virulence Factor with Similarity to Human Collagen
Open Access
- 1 December 2000
- journal article
- Published by American Society for Microbiology in Infection and Immunity
- Vol. 68 (12) , 6542-6553
- https://doi.org/10.1128/iai.68.12.6542-6553.2000
Abstract
Group A Streptococcus (GAS) expresses cell surface proteins that mediate important biological functions such as resistance to phagocytosis, adherence to plasma and extracellular matrix proteins, and degradation of host proteins. An open reading frame encoding a protein of 348 amino acid residues was identified by analysis of the genome sequence available for a serotype M1 strain. The protein has an LPATGE sequence located near the carboxy terminus that matches the consensus sequence (LPXTGX) present in many gram-positive cell wall-anchored molecules. Importantly, the central region of this protein contains 50 contiguous Gly-X-X triplet amino acid motifs characteristic of the structure of human collagen. The structural gene (designated scl for streptococcal collagen-like) was present in all 50 GAS isolates tested, which together express 21 different M protein types and represent the breadth of genomic diversity in the species. DNA sequence analysis of the gene in these 50 isolates found that the number of contiguous Gly-X-X motifs ranged from 14 in serotype M6 isolates to 62 in a serotype M41 organism. M1 and M18 organisms had the identical allele, which indicates very recent horizontal gene transfer. The gene was transcribed abundantly in the logarithmic but not stationary phase of growth, a result consistent with the occurrence of a DNA sequence with substantial homology with a consensus Mga binding site immediately upstream of the scl open reading frame. Two isogenic mutant M1 strains created by nonpolar mutagenesis of the scl structural gene were not attenuated for mouse virulence as assessed by intraperitoneal inoculation. In contrast, the isogenic mutant derivative made from the M1 strain representative of the subclone most frequently causing human infections was significantly less virulent when inoculated subcutaneously into mice. In addition, both isogenic mutant strains had significantly reduced adherence to human A549 epithelial cells grown in culture. These studies identify a new extracellular GAS virulence factor that is widely distributed in the species and participates in adherence to host cells and soft tissue pathology.Keywords
This publication has 84 references indexed in Scilit:
- Nonpolar Inactivation of the Hypervariable Streptococcal Inhibitor of Complement Gene ( sic ) in Serotype M1 Streptococcus pyogenes Significantly Decreases Mouse Mucosal ColonizationInfection and Immunity, 2000
- New protective antigen of group A streptococciJournal of Clinical Investigation, 1999
- Rapid Molecular Genetic Subtyping of Serotype M1 Group A Streptococcus StrainsEmerging Infectious Diseases, 1999
- Novel series of plasmid vectors for gene inactivation and expression analysis in group A streptococci (GAS)Gene, 1996
- Protein SIC, a Novel Extracellular Protein of Streptococcus pyogenes Interfering with Complement FunctionJournal of Biological Chemistry, 1996
- CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choiceNucleic Acids Research, 1994
- Structural heterogeneity of the emm gene cluster in group A streptococciMolecular Microbiology, 1993
- Identification of multiple cell adhesion receptors for collagen and fibronectin in human fibrosarcoma cells possessing unique alpha and common beta subunits.The Journal of cell biology, 1987
- Expression of Streptococcal M Protein in Escherichia coliScience, 1983
- A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptidesJournal of Molecular Biology, 1983