Parallel evolution of conserved non-coding elements that target a common set of developmental regulatory genes from worms to humans
Open Access
- 2 February 2007
- journal article
- research article
- Published by Springer Nature in Genome Biology
- Vol. 8 (2) , R15
- https://doi.org/10.1186/gb-2007-8-2-r15
Abstract
Background: The human genome contains thousands of non-coding sequences that are often more conserved between vertebrate species than protein-coding exons. These highly conserved non-coding elements (CNEs) are associated with genes that coordinate development, and have been proposed to act as transcriptional enhancers. Despite their extreme sequence conservation in vertebrates, sequences homologous to CNEs have not been identified in invertebrates. Results: Here we report that nematode genomes contain an alternative set of CNEs that share sequence characteristics, but not identity, with their vertebrate counterparts. CNEs thus represent a very unusual class of sequences that are extremely conserved within specific animal lineages yet are highly divergent between lineages. Nematode CNEs are also associated with developmental regulatory genes, and include well-characterized enhancers and transcription factor binding sites, supporting the proposed function of CNEs as cis-regulatory elements. Most remarkably, 40 of 156 human CNE-associated genes with invertebrate orthologs are also associated with CNEs in both worms and flies. Conclusion: A core set of genes that regulate development is associated with CNEs across three animal groups (worms, flies and vertebrates). We propose that these CNEs reflect the parallel evolution of alternative enhancers for a common set of developmental regulatory genes in different animal groups. This 're-wiring' of gene regulatory networks containing key developmental coordinators was probably a driving force during the evolution of animal body plans. CNEs may, therefore, represent the genomic traces of these 'hard-wired' core gene regulatory networks that specify the development of each alternative animal body plan.Keywords
This publication has 61 references indexed in Scilit:
- Close sequence comparisons are sufficient to identify human cis-regulatory elementsGenome Research, 2006
- A distal enhancer and an ultraconserved exon are derived from a novel retroposonNature, 2006
- Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomesGenome Research, 2005
- WebLogo: A Sequence Logo Generator: Figure 1Genome Research, 2004
- Comparative genomics at the vertebrate extremesNature Reviews Genetics, 2004
- Systematic functional analysis of the Caenorhabditis elegans genome using RNAiNature, 2003
- Initial sequencing and analysis of the human genomeNature, 2001
- A Greedy Algorithm for Aligning DNA SequencesJournal of Computational Biology, 2000
- Gapped BLAST and PSI-BLAST: a new generation of protein database search programsNucleic Acids Research, 1997
- tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic SequenceNucleic Acids Research, 1997